
An Open Test Bed for Medical Device Integration and Coordination∗

Andrew King, Sam Procter†

Dan Andresen, John Hatcliff‡, Steve Warren
Kansas State University

{aking,samuel3,dan,hatcliff,swarren}@ksu.edu

William Spees, Raoul Jetley
Paul Jones, Sandy Weininger

US Food & Drug Administration
{William.Spees,Raoul.Jetley,PaulL.Jones,

Sandy.Weininger}@fda.hhs.gov

Abstract
Medical devices historically have been monolithic units – de-

veloped, validated, and approved by regulatory authorities as
stand-alone entities. Modern medical devices increasingly incor-
porate connectivity mechanisms that offer the potential to stream
device data into electronic health records, integrate information
from multiple devices into single customizable displays, and co-
ordinate the actions of groups of cooperating devices to realize
“closed loop” scenarios and automate clinical workflows. How-
ever, it is not clear what middleware and integration architectures
may be best suited for these possibly numerous scenarios. More
troubling, current verification and validation techniques used in
the device industry are not targeted to assuring groups of inte-
grated devices, and regulatory regimes have not yet been devel-
oped that allow manufacturers to bring systems of cooperating
devices (each approved individually beforehand) to market.

In this paper, we propose a publish-subscribe architecture for
medical device integration based on the Java Messaging Service,
and we report on our experience with this architecture in multi-
ple scenarios that we believe represent the types of deployments
that will benefit from rapid device integration. This implementa-
tion and the experiments presented in this paper are offered as an
open test bed for exploring a multitude of development, quality
assurance, and regulatory issues related to medical device coordi-
nation.

1 Introduction
Most early medical devices were manually operated and

incorporated electrical and mechanical control functional-
ity. As medical-device complexity increased, analog cir-
cuitry was replaced or supplemented with digital technol-
ogy, driving an increased reliance on embedded and high-
level software for the implementation of critical device
functionality. For example, early pacemakers included
around 10,000 lines of code. Today, a modern pacemaker
will host over 100,000 lines of code. Despite the increas-

∗SAnToS Tech Report 2008-02. Submitted for publication. This ma-
terial is based upon work supported by the National Science Foundation
under Grants # 0454348 and 0734204 and by the Air Force Office of Sci-
entific Research.

†Author’s current affiliation: University of Nebraska, Lincoln
‡Corresponding Author.

ing focus on medical device software, much of this code
is still developed by engineers whose primary training is
geared toward low-level hardware and firmware develop-
ment – few are trained in state of the art software develop-
ment technologies or formal quality assurance techniques.
Conversely, challenges of medical device development have
not been sufficiently exposed in the software engineering
community, leading to a situation where innovations in soft-
ware engineering and validation techniques are slow to be
incorporated in medical device development. Addition-
ally, device regulation approaches have been rigid by na-
ture to promote patient safety, so regulation is naturally out-
paced by rapid advances in software technology that can be
quickly adopted as functional improvements in generic con-
sumer electronics, broadening the gap between what is ex-
pected from devices and what can be realistically validated.

Historically, medical devices have been developed as
monolithic stand-alone units. Current Verification and Val-
idation (V&V) techniques used in industry primarily tar-
get single monolithic systems. Moreover, FDAs regulatory
regimes are designed to approve single stand-alone devices.
Currently, there are no guidelines in place for how the in-
dustry might bring to market a framework that provides new
and extensible clinical functionality (in essence, creating
“virtual devices”) by utilizing an open system of cooper-
ating medical device components from different vendors.
This is driven by uncertainty regarding how one might reg-
ulate device collections when the full suite of device-device
interactions is not fully known a priori [21, 20].

This state of affairs stands in direct contrast to the per-
vasive integration of and cooperation among computing de-
vices in our world today, and it is quite clear that numerous
clinical motivations exist to deploy systems of integrated
and cooperating medical devices. Many devices marketed
today already include some form of connectivity (serial
ports, Ethernet, 802.11 or Bluetooth wireless) – typically
used to unidirectionally log data/events from these devices.
However, it is anticipated that medical systems will undergo
a paradigm shift as device integration moves well beyond
simple connectivity to provide functionality such as device



data streaming directly into patient electronic health records
(EHRs), integration of information from multiple devices
in a clinical context (e.g., hospital room) into a single tai-
lorable composite display, and automation of clinical work-
flows via computer systems that control networks of devices
as they perform cooperative tasks. Indeed, companies in-
cluding Cerner, CapsuleTech, Philips/Emergin, Sensitron,
and iSirona are bringing to market infrastructure that facili-
tates streaming of device data into medical records. In addi-
tion, large-scale research projects such as the Medical De-
vice “Plug and Play” Interoperability Program [13], funded
by the U.S. Army’s Telemedicine and Advanced Technol-
ogy Research Center (TATRC), are developing standards
and prototypes for systems of cooperating devices.

In summary, the technology exists to assemble many
of types of medical systems that can substantially improve
health care quality while lowering costs of medical care. It
is, in fact, so easy to establish ad hoc networks and integrate
devices that companies are rapidly pushing integration so-
lutions into market, and increasing numbers of clinical tech-
nicians are “rolling their own” device networks. This state-
of-affairs is dangerous because the V & V technology and
regulatory processes to guarantee the safety and security of
these systems is lacking.

Progress must be made on a number of fronts to address
the challenges described above.

• Which middleware and integration architectures are
candidates to support device integration across multi-
ple interaction scenarios?

• Which programming models are suitable for rapid de-
velopment, validation, and certification of systems of
interacting medical devices?

• What V & V techniques are appropriate for composi-
tional verification of envisioned medical systems, and
how can the effectiveness of the techniques be demon-
strated so as to encourage adoption among commercial
vendors?

• Can existing regulatory guidelines and device approval
processes that target single devices be (a) extended to
accommodate component-wise approval of integrated
systems and (b) established in a manner that encour-
ages innovation and rapid transition of new technolo-
gies into the market while upholding a mandate of ap-
proving safe and effective technologies?

• What interoperability and security standards are neces-
sary to encourage development of commodity markets
for devices, displays, EHR databases, and infrastruc-
ture that can support low cost deployment of integrate
systems and enable flexible technology refresh?

To facilitate industry, academic, and government explo-
ration of these issues, we are developing an open Medi-
cal Device Coordination Framework (MDCF) for design-
ing, implementing, verifying, and certifying systems of

integrated medical devices. This paper reports on our
experience of using publish-subscribe architectures and
component-based model-driven development along with
standards-compliant open-source code-bases in the initial
development of this infrastructure. The specific contribu-
tions of this paper are as follows:
• We identify three clinical contexts in which device in-

tegration has the potential to be especially effective,
and we summarize performance, development, and
regulatory requirements of each.

• We propose a flexible publish-subscribe middleware
architecture based on the Java Messaging Service
(JMS) to support exploration of issues surrounding
systems of integrated medical devices.

• We propose a model-based programming environment
for rapid development of systems of integrated de-
vices that we believe has the potential to support a new
paradigm of regulatory oversight that can accommo-
date approval of device integration scenarios.

• We describe experiments that evaluate our infrastruc-
ture against the data formats, performance require-
ments, system functionality that we believe are rep-
resentative of the requirements of envisioned clinical
contexts for systems of integrated devices.

We are submitting this paper to the ICSE Experience Track
because we seek to (a) directly engage the software engi-
neering community with initial experience and challenge
problems associated with this emerging paradigm of medi-
cal systems and (b) overcome community barriers that have
previously inhibited interactions between the software engi-
neering researchers/practitioners, industrial medical device
developers, and government regulatory authorities. The
contents of this paper should not be interpreted as an en-
dorsement by the FDA of any particular technology, soft-
ware infrastructure, or direction for regulatory policy. How-
ever, we expect experience with frameworks like the one
presented here to provide science-based input to ongoing
regulatory policy and standards development efforts. The
infrastructure is available for public download at [12].

2 Clinical Contexts
Device integration/coordination can be beneficial in a

number of contexts. However, requirements on computa-
tional resources, performance, data rates, information avail-
ability, safety, and programmability vary greatly across
these contexts. In this section, we note the characteristics
of three clinical device integration contexts (CDICs) that
we believe are especially relevant.

2.1 Room-oriented Device Information Presentation

Concept: A typical hospital room in an intensive care ward
hosts a number of stand-alone devices (see Figure 1). Many
modern rooms are integrated with an EHR database to log
clinical activities, lab data, treatment plans, and information



Figure 1. Integrated device display

for patient billing. Connections to drug dosing databases
may also be available to facilitate correct drug dispensing.

In such contexts, a number of factors reduce efficiency,
degrade the quality of the patient’s encounter, and increase
error likelihood. Each device in the room has its own user
interface, and these interfaces are non-uniform – potentially
leading to mental overload and confusion on the part of the
caregiver. The devices are physically separated from each
other (e.g., on different sides of the bed), and a caregiver
must step from one device to another to read device dis-
plays or change settings. Different interfaces in different
locations make it more difficult for clinicians encountering
an alarm or some other critical event to rapidly gain situa-
tional awareness. Clinicians with different roles (e.g., the
patient’s doctor versus a nurse tasked with dispensing pre-
scriptions) are likely to need different “views” or presenta-
tions of device information, and such reconfigurations must
be carried out manually. Finally, each device provides data
necessary to assess a patient’s condition, but data are logged
separately for each device, are not easily searchable, and do
not always become part of the patient’s EHR.
Integration Solution: Figure 1 presents a vision of how
devices and medical information systems can be integrated
to address these issues. Several vendors including Cap-
sule Tech, Cerner, LiveData are now marketing integration
frameworks that cover one or more aspects of this vision.
In these integrated solutions, traditional medical devices are
viewed as data producers that publish periodic or streaming
data to several types of data consumers.

An EHR database serving as a data consumer allows in-
formation from individual devices to be integrated directly
into the EHR. This aggregates device data into one place
(simplifying record keeping), facilitates data searches (to
speed diagnoses and track device performance), and facili-
tates discovery and tracking of statistical trends or anoma-
lies that would otherwise go unnoticed by clinicians.

Another type of data consumer would be a single “heads
up” display that takes information from multiple devices

and an EHR database (in this case, acting as a data pro-
ducer) and formats it on one or more large monitors near
the patient bed. For example, Cerner’s recently-released
CareAware infrastructure uses IBM’s Eclipse framework to
aggregate data from multiple devices onto such displays. In
CareAware, the Eclipse “view” mechanism is used to de-
fine one or more data views from a particular device and
even to combine and integrate data coming from multiple
devices [2]. The Eclipse “perspective” mechanism is used
to define different collections of views that are tailored to
the concerns of different caregivers.
Implementation Issues and Requirements: The device
integration scenario above must support different data
amounts and rates. For example, a pulse oximeter finger
clip may yield only heart rate and blood oxygen saturation
values that are updated as individual parameters every 10
seconds, yet an electronic stethoscope may need to stream
data at 8 kilosamples per second over the network. The
architecture must allow easy insertion of “data transforma-
tion” components that aggregate, filter, and transform data.
The infrastructure must be supported by a programming and
validation environment that (a) allows easy definition and
composition of data producers, consumers, and transform-
ers and (b) provides facilities for thorough validation and
easy auditing so as to support regulatory oversight.
Deployment Strategies: This integration scenario may be
implemented using a dedicated server for each room, or by
a collection of one or more servers that support integration
activities across an entire ward or suite of rooms. Thus,
any integration framework that aims to support this CDIC
should be evaluated to determine if can give acceptable per-
formance as the number of rooms scales when deployed in
a server-for-multiple-rooms configuration.
V&V and Regulatory Issues: When considering the via-
bility of different architectures and deployment strategies,
one must first assess conformance to basic safety, perfor-
mance, and security requirements. In this context, safety
and performance issues include the following: Can the in-
frastructure transfer data from producers to consumers at
required rates while avoiding unacceptable latencies and jit-
ter? Are data out-of-range and network babbling scenarios
properly anticipated and addressed? Security issues center
around the ability of the infrastructure to ensure that pri-
vate data are unobservable and unalterable by unauthorized
parties. In a shared server scenario, the most likely source
of safety and security threats would be interference between
activities in different rooms supported by the server or other
network nodes. For example, heightened activity in one
or more rooms might degrade the performance in another
room. Data transmitted from one room may be leaked or
observed by a party in another room. A server-per-room
strategy would seem to have safety and security advantages
(e.g., no interference between activities in different rooms)



but would be subject to more difficult and costly mainte-
nance (e.g., more machines to maintain).

As stated in Section 1, almost any device-integration
consideration raises a number of regulatory issues due to
the fact that devices currently are approved by the FDA as
stand-alone units. No claims are made about their potential
integration with other devices. Device approval addresses
a number of issues including assessment of human factors
in the reading and understanding of device displays. Since
one of the primary motivations for this integration scenario
is to redisplay information produced by a device on an inte-
grated display, any such redisplay should be faithful to the
precision and presentation of data on the original device.
Any filtering, transformation, or integration of data runs the
risk of masking important data or alarms from the original
device or leading to clinicians interpreting the data redis-
play in a manner that differs from that of the original device
display. In fact, for transformations that radically alter the
original data, it is possible that FDA may interpret such a re-
display as a new device (albeit, a virtual device) that would
be subject to FDA regulatory oversight.

2.2 Alarm Integration and Forwarding

Concept: Many medical monitoring devices produce alarm
signals when device data fall outside of a prespecified range.
Proper implementation of device alarms and clinical work-
flows to monitor/respond to alarms is a significant concern.
The IEC 60601-1-8 standard [9] lists a variety of require-
ments for alarm categories, priorities, auditory and visual
alarm signals, and vendor documentation of alarm logic and
settings. It also defines the notion of a distributed alarm sys-
tem that forwards alarm information for multiple devices to
a central nurse station, database, or paging system.1

To combat problems of alarm false positives (the pres-
ence of many false positives can cause providers to ignore
alarms or disable them), some researchers and vendors are
producing “smart alarms” that use some form of sophis-
ticated reasoning (e.g., fuzzy logic) to improve accuracy.
Substantially increasing connectivity between devices and
health information databases as in Section 2.1 makes it pos-
sible to design alarms that consider not just readings from a
single device but also readings from multiple devices or ac-
cumulated health histories. For example, rather than adopt-
ing a “one size fits all” approach to alarm threshold param-
eter settings, which may lead to false positives/negatives,
an automatic threshold setting algorithm could consider the
current patient body type, weight, etc. as well as large col-
lections of patient histories to provide more accurate set-
tings. Utilizing multiple device integration, MDPnP has
considered simple use cases where alarms are only raised
if two different devices (e.g., pulse oximeter and a respira-

1Philips/Emergin is a good example of a comprehensive distributed
alarm system.

tory monitor) both show alarm conditions [7].
Integration Solution, Implementation, and Deployment:
To support open experimentation with these emerging tech-
nologies, an integrated distributed alarm and device system
must be able to forwarding alarm events that include infor-
mation about the priority and source of the alarm (room,
patient, and device) as well as information signals that pro-
vide data from monitoring devices (e.g., an ECG waveform
indicating ventricular fibrillation). Other requirements are
similar to the CDIC in Section 2.1. Transformations on data
streams must be easily programmable to support data/alarm
correlation from multiple devices and access to health in-
formation databases.

2.3 Critical Care Device Coordination

Concept: The above CDICs consider unidirectional flows
of information from devices (restricted to producers of data)
to displays or medical databases. Relaxing this restriction
to allow devices to be data/control consumers substantially
increases risks but can provide tremendous benefits includ-
ing increased precision, removal of the potential of human
error in tedious and repetitive tasks, reduction of time in
time-sensitive tasks, and cost reductions. In system con-
cepts currently envisioned, e.g., by MDPnP, risks and safety
concerns are mitigated by having an automated or semi-
automated agent control and supervise communication be-
tween devices, thus avoiding unexpected interactions that
may arise in direct inter-device communications.
Example: An integrated X-ray/ventilator demonstration
from MDPnP is an example of useful coordination that ad-
dresses the common problem of acquiring chest X-rays of
patients on ventilators. To keep the lungs’ movements from
blurring the image, doctors must manually turn off the ven-
tilator for a few seconds while they acquire the X-ray image,
but there are risks in inadvertently leaving the ventilator off
for too long. These risks can be minimized by automati-
cally coordinating the actions of the X-ray imaging device
and the ventilator: specifically, the ventilator can identify
when the lungs are at full inhalation or exhalation (and thus
experiencing minimal motion) so that the X-ray image can
be automatically captured at the optimal point in time [7].

Various levels of automated feedback mechanisms that
close the monitor-assess-treat loop are present in single de-
vices today. Examples include so-called “smart pumps”
that use monitored parameters (e.g., blood pressure, heart
rate, and blood glucose level), to control fluid infusion (e.g.,
insulin) into the body. A framework that supports con-
trolled device coordination can expand closed-loop capabil-
ities from functionality hard-coded into single devices up
to flexible and extensible functionality that spans multiple
devices. Smart pumps have been helpful to assure preci-
sion infusions that reduce harmful over- or under-dosing of
fluids. However, the executable behavior of smart pumps



Figure 2. Critical care device coordination

is relatively complex compared to most modern medical
devices. Recalls on such devices have occurred due to
software-related problems. As closed loop concepts are
scaled to multiple devices, frameworks like ours that facili-
tate open experimentation and assessment are crucial.
Integration Solution: Figure 2 presents a vision of the
functional capabilities of a critical care device coordination
framework. A collection of network-capable devices are
connected to a coordination framework. A device database
records the unique identifiers (e.g., based on MAC address)
and device drivers for devices that have been pre-approved
for connection to the framework. A database of available
coordination behaviors holds scripts written by experts that
implement approved coordination protocols. A clinician
that desires a particular coordination behavior chooses an
appropriate script from the database. Each script contains a
list of device types needed to carry out a coordination activ-
ity. During the script execution start-up phase, the script in-
terpretation framework attempts to acquire devices that are
currently on the network and allocated to the current clinical
context (e.g., present in the current room). The clinician as-
sists with device acquisition (e.g., by selecting from a list of
available devices of the appropriate type). After a complete
set of required devices has been selected and confirmed as
available (a device may be restricted from participating in
more than one script at a time if it is being subjected to au-
tomated control, while “read only” devices may be shared),
the script interpreter begins execution of the coordination
script. Script execution may proceed without intervention,
or may stop to receive input from the clinician.

The device coordination framework functionality that we
have sketched above is similar to functionality being pro-
posed in the ICEMAN draft standard from the MDPnP
group. Although we have not designed our framework to
directly implement that draft standard, one of the goals of
the experiments reported in this paper is to illustrate that
publish/subscribe architecture is capable of supporting the
functionality required by the standard.

Implementation Issues and Requirements: The CDIC of
Figure 2 requires all of the functionality of the Device In-
formation Integration CDIC of Figure 1. In addition, the
component categories (data producer, consumer, and trans-
former) must be enhanced to include coordination compo-
nents that can be thought of as simple automata with I/O that
interact with devices and clinicians. The notion of a device
component must also be enhanced to include interface ports
that provide data input to or control of devices.

Due to the increased levels of criticality associated with
device coordination (as compared to the earlier scenario
focusing on device data presentation), the associated pro-
gramming and validation environment must be able to sup-
port more rigorous notions of specification and validation
for greater regulatory oversight.
Deployment Scenarios: In contrast to the CDICs that in-
cluded possible deployment configurations in which shared
servers supported pub/sub activities across multiple hospital
rooms, we believe that, for this highly safety-critical con-
text, it is important to reduce the risk of unanticipated and
potentially harmful interference by allowing a server to sup-
port only a single room at a time. Improvements in verifi-
cation technology that can provide high confidence of non-
interference between multiple coordination activities may
eventually lead to this restriction being lifted (in fact, one
reason for our work is to provide a test bed that facilities
research on and demonstration of such technology). How-
ever, for the present, the risks of potential harmful interfer-
ence are best mitigated by using separate dedicated servers
for each coordination activity.

3 Goals
Below we list the design goals for our MDCF.

1. Provide distributed networking middleware infrastruc-
ture that enables devices/displays/databases from dif-
ferent vendors to be integrated with minimal effort.

2. Provide payload capabilities that support common data
formats used in the medical device and medical infor-
matics domains.

3. Provide an architecture that enables tailoring, integrat-
ing, and transforming device information streams.

4. Support the requirements of realistic device integration
contexts as described in Section 2.

5. Develop an architecture whose performance and
application-level programmability scales gracefully as
the number of integrated devices and computational re-
sources (e.g., server machines) increases.

6. Provide basic functionality needed for reliability in-
cluding options for guaranteed message delivery, log-
ging/auditing, and persistent storage of messages.

7. Support a script programming model that makes it easy
to assemble new functionality from building blocks.

8. Use infrastructure that is freely available and open
source (to enable academic research).



Figure 3. JMS primary objects

9. Use standards-based frameworks that are supported by
enterprise-level implementations that can provide suit-
able performance in a realistic enterprise setting.

10. Because it will be difficult for academics to obtain real
devices, support both real and simulated devices.

4 Architecture
4.1 MOM Foundation

The design of our core architecture is driven by practical
realities of the clinical device integration contexts in Sec-
tion 2, such as (a) flexible, dynamic information flow (fre-
quently needing privacy), (b) heterogeneous systems, mech-
anisms, and needs, (c) many listeners, and many sources,
and (d) time-critical, scalable performance. A message-
oriented, publish-subscribe architecture with decentralized
hubs, dynamic queuing, reliable message passing, and
enterprise-grade deployment fits these criteria nicely. Thus,
we chose to build upon a messaging-oriented-middleware
(MOM) foundation. To address the goals of Section 3, we
believe it is best to consider MOMs based on the Java Mes-
sage Service (JMS) standard. JMS satisfies the criteria (a-d)
above, while providing low-cost, open-source implementa-
tions for low barriers to entry and easy integration into re-
search environments (Goal 8). In addition, there are mul-
tiple commercial enterprise-quality JMS implementations
such as those found in IBM’s WebSphere and Oracle’s AQ
products (Goal 9). JMS provides point-to-point or pub-
lish/subscribe topologies (addressing Goals 1 and 3), reli-
able or unreliable message delivery (Goal 6), and high per-
formance (Goal 9). It enables distributed communication
which is “loosely coupled, reliable, and asynchronous.” In
our application environment, its ability to pass simple data
types as well as complex objects enables a clean integra-
tion with structured text standards such as HL7, as well as
complex objects for seamless framework control (Goal 2).

Figure 3 presents the primary objects involved in JMS
publish/subscribe communication. When a client wishes
to originate a connection with a JMS provider, it uses the
Java Naming and Directory Interface (JNDI) to locate a
Connection Factory that encapsulates a set of connection-
configuration parameters for the provider. The client then

Figure 4. JMS destinations

uses the Connection Factory to create an active Connection
to the provider (typically represented as an open TCP/IP
socket between the client and the providers service dae-
mon). In our architecture, clients will do all of their mes-
saging with a single Connection. A Connection supports
an Exception Listener that will be called when an connec-
tion fails (which we will use to handle situations in which
a device unexpectedly disconnects in the middle of an ac-
tivity). Once a connection is established, a client uses the
connection to create a JMS Session.

Figure 4 illustrates that a JMS destination is an abstract
entity to/from which a client publishes or receives a mes-
sage. Destinations are located/retrieved via JNDI calls. A
session serves as a factory for creating MessageProducers
or MessageConsumers for a particular destination. To send
a message, a client requests a session to create an empty
message (of a particular type supported by JMS), the mes-
sage contents are filled in, and a MessageProducer is called
to send the message. To receive messages asynchronously
(which is the method we will use in our framework), the
client creates an object (a handler) that implements the Mes-
sageListener interface and sets that object as the listener for
a particular MessageConsumer.

A session is a single-threaded context designed for se-
rial use by one thread at a time. It conceptually provides
a thread for sending and delivering messages for all mes-
sage producers/consumers created from it, and it serializes
delivery of all messages to all of its consumers.

Figure 5 illustrates that the abstract structure of a JMS
message is divided into three parts: a header containing
values used by both clients and providers to identify and
route messages, a properties section containing application-
defined or JMS-provider-defined key-value pairs that pro-
vide additional metadata about the message, and the pay-
load of the message. A number of these fields such as Des-
tination, DeliveryMode, MessageID, Timestamp, and Re-
delivered are not set by the client but by the infrastructure
layer as a message is transmitted. We use the Timestamp
field to gather performance information reported on in Sec-
tion 6. Other fields such as CorrelationID and ReplyTo are



Figure 5. JMS message format

set by the client to guide responses to messages. We use
CorrelationID to support the situation where we have multi-
ple integration scenarios running on the same server. There
are a few base administrative destinations (communication
channels) that are shared among all running scenarios; each
scenario sets a unique correlationID and watches for re-
sponses from the scenario administrator using the same ID.

Property values are set by the client prior to sending a
message. When constructing a message consumer, a client
can specify a filter expression that references fields in mes-
sage headers and properties; only messages that pass the
filter are delivered to clients. Thus, the primary purpose of
message properties is to expose attributes for filtering. We
currently use filtering only on header fields, but the prop-
erty mechanim provides significant flexibility for enhanced
functionality moving forward.

JMS provides a number of different formats for message
payloads. We primarily use text messages (e.g., HL7 and
most other data) and object messages (e.g., for DICOM im-
ages) (see Section 6).

4.2 MDCF Modules

We briefly summarize the structure of internal MDCF
modules built in top of JMS (as seen in Figures 1 and 2),
and refer the reader to the extended version of this paper for
details [12].

A device connection manager listens on a dedicated JMS
channel (stored in the JNDI) for messages indicating that
a device desires to connect with the system. To simplify
lower-level protocols and to facilitate the construction of
mock devices, we assume that each device runs a JVM
with a JMS client. Real devices that do not include an
onboard JVM can be incorporated by attaching them to a
JVM-capable adapter device.2 Devices proceed through a
authentication protocols that verifies that the connecting de-
vice is in a database (implemented using HSSQL) of ap-
proved devices and associated drivers (which provide API

2Frameworks by Cerner and Philips/Emergin use similar adapters.

descriptions for interacting with each device).
Several consoles including a maintenance console (to al-

low installation of new device drivers, interaction scripts,
etc.), monitoring console (that allows monitoring of events
flowing through the infrastructure), and a clinician console
that provides visualization of device and EHR data, invoca-
tion of and interaction with device coordination scripts. A
scenario manager manages the life-cycle of scenario script
executions including acquisition of devices needed in the
script, creation of components and JMS channels to realize
intercomponent communication, and tear-down of compo-
nents and channels after script execution.

5 Programming Model
We anticipate that device integration scenarios will be

implemented either by developers at a company that sup-
plies an integration framework (who would find it advan-
tageous to build up a collection of reuseable components
or product lines to serve multiple customers) or by on-site
clinical engineers (who may not be familiar with underlying
middleware and network concepts). Thus, we have devel-
oped a component-based programming model that abstracts
away the details of the lower-level infrastructure and facili-
tates rapid assembly of integration scenarios from reusable
components (Goal 7).

The component model supports typed input/output event
(asynchronous) ports with multiple categories of compo-
nents, including data producers such as devices, data trans-
formers that filter, coelesce or transform data streams, and
data consumers that represent displays or data repositories.
Some components may be both data producers and con-
sumers, such as devices that may be controlled by others
or health information databases.

We have built an integration scenario development en-
vironment in our Cadena framework [3]. Cadena provides
component-based meta-modeling that enables us to define
a domain-specific language of components for building de-
vice integration scenarios. Given a meta-model of the com-
ponent language, Cadena generates a component interface
editor that allows one to define component types and a sys-
tem scenario editor that allows one to allocate and con-
nect component instances to form an executable system.
Cadena’s rich type system allows one to define different
type languages for component ports that capture specific
properties of data communicated between components. Ca-
dena provides a notion of “active typing” that continuously
checks for type correctnesss as a system scenario is con-
structed in the graphical scenario editor.

Figure 6 shows a device integration scenario built in Ca-
dena’s scenario editor. Components corresponding to med-
ical devices such as blood pressure and cardiac monitors
appear on the right of the figure. Connections between com-
ponents represent publish/subscribe relationships.



Figure 6. ICU scenario components

We have built a Cadena plugin that provides facilities
akin to a very light-weight version of the CORBA Com-
ponent Model (CCM). Given a Cadena type signature for
an MDCF component, autocoding facilities generate a Java
skeleton/container for the component. The skeleton con-
tains all logic required by the framework to enable the com-
ponent implementation to connect to the framework as a
framework component (this includes automatically gener-
ating the logic for subscription assignment and publishing
logic). The component developer then only needs to imple-
ment the “business logic” – the code that processes medical
information (such as a data transformer or rendering rou-
tine) or device access logic (interaction with actual device
sensor hardware).

Similar in spirit to CCM’s deployment and configuration
infrastructure, the plugin can also analyze a Cadena coordi-
nation scenario model and generate a MDCF specificiation
file. The MDCF specification file consists of XML that de-
scribes the named component graph. The logical name of
each component instance and the type of the component is
present, as well as what inter-component connections exist.
This information is used by the MDCF to locate the ap-
propriate MDCF component class files and instantiate the
coordination scenario.

We believe that the use of sophisticated architectural
types and component encapsulation can help in construct-
ing assurance cases for integration scenarios. Use of com-
ponent technology helps prevent unanticipated interference
between components by insuring that components only in-
teract through explicitly declared ports. The strong typing
in the Cadena modeling environment reduces the possibility
of programming errors.

6 Experiments
Two categories of experiments were designed to evaluate

the viability of the framework: baseline experiments and
clinical scenario experiments. Baseline performance ex-

periments use simple producer/consumer configurations to
measure the raw performance of the framework as it prop-
agates data representative of clinical contexts. CDIC ex-
periments use device/display component configurations that
correspond to the clinical integration contexts presented in
Section 2 to assess the ability of the framework to support
typical usage modes.

Three categories of data were considered in our exper-
iments: device data (point data and streaming data from
monitoring devices), alarm events (relatively infrequent
anomaly events published by devices), and medical infor-
matics data (relatively infrequent and large data sets cor-
responding, e.g., to patient record data, drug dosing infor-
mation, and medical images). Parameter settings (e.g., the
rates at which device data are published) are set to account
for perceived worst case assumptions (maximum system re-
quirements). For example, given a source device such as an
electrocardiograph, a data update rate of once every 50 ms is
considered frequent enough for a physician’s data display to
appear as if the data arrive in real time, so the data transfer
and display process will not affect the quality of the asso-
ciated clinical assessment. Other types of sensor data (e.g.,
blood pressure, heart rate, or blood oxygen saturation) can
arrive much more infrequently. In our experiments, we will
simply assume that devices publish information at a mini-
mum interval of once every 50 ms. Low latency is important
for device and alarm data, but less so for informatics data.

Tests were performed on a single server representing the
anticipated minimum machine configuration likely to be en-
countered in an enterprise-grade hospital information sys-
tem (HIS) setting. We used a Sun Fire X4150 server with
dual 2.8 GHz quad-core Xeon processors, 8 GB of RAM,
a local 250 GB hard disk, and a gigabit Ethernet connec-
tion to the network fileserver. The server runs Linux 2.6.23,
Java 1.5.0 13-b05, and OpenJMS 0.7.7-beta-1. OpenJMS
was configured for non-persistent messaging unless other-
wise noted. We observed that the current openJMS internal
software architecture produced strongly asymmetric results;
we expect other JMS implementations to provide more bal-
anced performance. All results were averaged over multiple
runs.

6.1 Baseline Performance

These experiments were designed to measure the
throughput of the framework for single-step propagation
(from a data producer to data consumer) given different
types and sizes of clinical data. Performance was measured
as a function of the numbers of producers/consumers un-
der different connection topologies (fan-in/fan-out of pro-
ducer/consumer relations).

6.1.1 Data Types and Connection Topologies

Three types of data were considered: simple event notifica-
tions, Health Level 7 (HL7) messages, and DICOM image



data.
Simple Event Notifications: Having minimal or no pay-
load, these support the alarm notification of Section 2.2 (lit-
tle or no payload), control instructions such as the X-ray
activation of Section 2.3 (little or no payload) as well as
many forms of device data such as the heart rate notifica-
tion of Section 2.1 (small payload). To simulate messages
of this type, we use JMS ByteMessages with a payload of
10 bytes.
HL7: Health Level 7 is a messaging standard for the
electronic exchange of medical information. HL7 mes-
sages use a text format (frequently XML-based) to structure
medical data, health record queries, and data from health
records. Although theoretically unlimited in size, these
message typically range between several hundred and sev-
eral thousand bytes. Our base experiments use three sample
HL7 messages from the CDC Immunization Record EX-
change (iREX) project [10], where messages range in size
from 313 bytes to 4312 bytes. The small 313-byte mes-
sage is an HL7 patient vaccine record query message. The
medium 2227-byte message contains a fragment of a pa-
tient record that notes adverse reactions to vaccinations (a
VAERS record). The large 4312-byte message is also a
VAERS record, but with more vaccination events noted.
DICOM: The DICOM image exchange and storage format
supports high resolution digital images tightly coupled with
patient information. For instance, a DICOM file or message
will typically contain a digital image (JPEG or RLE/TIFF
format), a header containing the patient name or identifi-
cation, and other metadata such as image dimensions, for-
mat, color depth, manufacturer/software version, etc. [6, 11]
For our experiments, we use sample DICOM data from
[1]: “CR-MONO1-10-chest” (379 kB), “MR-MONO2-16-
knee” (130 kB), and “MR-MONO2-12-shoulder” (70 kB).
Connection Topologies: The base experiments evaluate the
framework with components arranged in basic topologies
that are likely to appear in real-world CDICs. These topolo-
gies consider that some devices, databases, or displays (e.g.,
a nurse’s station display) may be shared within and across
different scenarios. The topologies relating producers to
consumers include 1 to 1, 1 to 50, 1 to 100, 50 to 1, 100
to 1. In each topology, producers operate at “full throttle” –
emitting messages in a loop as fast as the infrastructure can
handle them.

6.1.2 Baseline Experimental Results

Both message size and connection topology affect the rate at
which messages will move through the framework. Larger
messages take longer to marshall/unmarshall, which re-
duces the rate at which the system can move messages. In-
terestingly, throughput is greatly affected by the connection
topology. Increasing the number of producers will not in-
crease the message throughput nearly as much as increasing

Figure 7. Message throughput

Figure 8. OR scenario components

the number of consumers. We suspect that this is because
the JMS provider maintains a queue of pending messages
that is shared between the provider’s worker threads. In the
case of many producers, many different messages can arrive
at the message queue at the same time, and some resource
contention can occur. When the number of consumers is
scaled, the system merely has to remove one message from
the queue and copy it to as many worker threads as system
resources allow.

6.2 Critical Care Device Coordination

We begin the CDIC experiments with the Device Coor-
dination Context discussed in Section 2.3. Due to its safety-
critical nature, this context has stronger real-time require-
ments. As discussed in Section 2.3, we expect that hospitals
or critical care providers will use a dedicated server for each
operating or critical care room, and the server will run one
scenario instance at a time.

For this experiment, we imagine an operating room
equipped with the following medical equipment networked
to the MDCF: an anesthesia machine with an integrated
ventilator and electrocardiograph (e.g., an Ohmeda Modu-
lus CD/CV) plus a blood pressure cuff. The operating room
is also equipped with a large heads-up display that renders



device data streams. In this scenario, we also incorporate a
software component, a Transformer, that preprocesses
the electrocardiogram data stream prior to the stream’s ren-
dering on the physical display. See Figure 8 for a graphical
depiction of this scenario’s logical components.

Mean latencies of the informational messages are excel-
lent - typically 1 ms. Each producer generates one data mes-
sage on its output ports once every 50 ms (small numerical
data messages that denote current sensor state, or a 50 ms
subsection of a continuous waveform). Alarm events are
updated once every 5 seconds.

Although this experiment does not represent an explicit
coordination activity, it is clear from the performance dis-
cussion that our infrastructure would also be able to support
critical care coordination activities such as those discussed
in Section 2.3 when OpenJMS is used as the JMS provider
and persistent messaging is disabled. Enabling persistent
messaging increases the mean latency to 5 ms, but the peak
latencies rise significantly, (in this case the peak latency was
7.42 seconds), indicating that OpenJMS may not be appro-
priate for some critical care scenarios when persistent mes-
saging is enabled.

Mode Mean % < 50ms % > 2×mean

Non-Pers. 1ms 99.99 1.0
Persistent 5ms 99.62 0.7

Table 1. Message latencies - OR scenario

6.3 Integrated Displays and Alarms

This experiment combines both the Room-Oriented De-
vice Information Presentation (Section 2.1) and the Alarm
Processing (Section 2.2) CDICs. It demonstrates the ability
of the MDCF to scale to ward level and still meet appropri-
ate quality-of-service standards.

In this scenario, we imagine a large ICU ward with mul-
tiple rooms – each equipped with a blood pressure cuff, car-
diac monitor, intravenous medicator, pulse oximeter, and
ventilator. Each of these devices produces one or more
data streams or alarm events (see Figure 6 for details).
Each room is equipped with a configurable in-room, heads-
up display that renders these data streams. The ward is
equipped with a nurse’s station display, which subscribes to
all alarm events generated by any of the individual room’s
devices. This experiment replicates the scenario 1 - 100
times and aggregates all alarm messages to one nurse’s sta-
tion instance.

As can be seen from Figure 9, the framework easily
scales to 20 rooms. Even when managing 20 rooms, the
maximum observed latency for any system message is 227
ms. The vast majority of the messages are transmitted much
more quickly. At 50 rooms, the mean latency remains good,
but the maximum observed latency has increased to 3 sec-
onds (the spread of latencies has also increased, as can be

Figure 9. ICU latencies

seen by the increase in standard deviation). At 100 rooms,
the maximum observed latency has grown to 4 seconds, but
most latencies are still within allowable bounds.

7 Related Work
The ground-breaking MDPnP effort [13] has inspired

many aspects of our work. MDPnP focuses on standards
development targeted at critical care device coordination,
including device connectivity protocols and a conceptual ar-
chitecture of an Integrated Clinical Environment (ICE) that
manages device connections and oversees inter-device coor-
dination activities (which roughly corresponds to our CDIC
of Section 2.3). The MDPnP effort follows other TATRC-
funded initiatives that highlighted the need for standards-
based interoperability architectures [16, 19, 5]; these efforts
complement other medical device plug-and-play initiatives
[4, 14].

MDPnP has not yet focused on perfor-
mance/functionality evaluations of potential middleware
infrastructures nor on implementing programming models
for coordination. Our work complements the MDPnP effort
by (a) exploring how a standard MOM framework (JMS)
can provide the functionality and performance necessary to
implement an ICE, (b) illustrating how the same framework
can be used to provide scalable performance for additional
CDICs (Sections 2.1 and Sections 2.2), (c) proposing a
high-level component-based programming model for spec-
ifying integrated device behaviors, and (d) providing an
open implementation to facilitate further experimentation.

Hofmann’s Masters thesis [8] provides an excellent
in-depth presentation of technical issues considered by
MDPnP. Hofmann defines a meta-model to describe medi-
cal devices and a communication protocol to enable plug-
and-play connectivity for compliant devices. A service-
oriented system was implemented that can pair application
requirements with device capabilities based on the ICE-
MAN device meta-model. The system was tested (focus-
ing on protocol correctness, not scalable performance) with
simulated medical devices. Although our framework im-



plements protocols to connect devices with pre-installed
drivers, we have not focused on true “plug-n-play” dynamic
discovery/loading of drivers. It would be natural to incorpo-
rate Hofmann’s proposed strategies into our infrastructure.

Several academic projects, including previous projects
at KSU [21, 20, 22] have investigated interoperability stan-
dards for home-health and body-area networks. This work
focuses primarily on consumer-oriented devices and net-
works as opposed to clinical use cases and enterprise-
oriented architectures. In the coming months, KSU re-
searchers plan a larger-scale demonstration that would in-
tegrate home health networks with the infrastructure de-
scribed in this paper to support remote monitoring in a large
assisted-living complex.

As noted earlier, several companies have recently
brought device integration frameworks to market that target
aspects of the CDIC functionality described here. The ear-
liest of these were from device manufacturers that focused
only on integrating devices that they themselves produced.
Others, like Philips/Emergin, have targeted specific tasks,
such as alarm management for a large class of devices from
multiple vendors. To the best of our knowledge, these are
closed proprietary implementations, and none of these tar-
gets the CDIC of critical care device coordination (which is
the primary motivation for our work).

8 Assessment and Conclusions
Based on these experiences, we assess the ability of

the JMS-based publish-subscribe architecture to satisfy the
goals presented in Section 3.
What Worked Well: We believe the architec-
ture/infrastructure presented here is an excellent candidate
for enterprise-quality frameworks that aim to integrate
devices, medical informatics systems, and multi-faceted
displays in clinical contexts such as those presented in
Section 2 (Goals 1 and 4). Industrial development trends
and government coordination efforts indicate that the
CDICs described here represent promising directions for
expanding functionality of systems of integrated devices.
We found JMS message types sufficiently rich to support
the information exchanges required by our CDICs (Goal 2).

Our experiments indicate that the infrastructure can pro-
vide the scalability necessary to support realistic deploy-
ments in clinical environments (Goal 5). We were pleased
that solid performance could be achieved with open source
implementations; commercial enterprise JMS implementa-
tions can be expected to provide additional performance and
reliability improvements (Goal 9).

The ability of a loosely-coupled component-based pro-
gramming model to support rapid development of integra-
tion scenarios from building blocks (Goal 7) and flexible
tailoring and transforming of information streams (Goal 3)
coincides with our past experience using component-based

development in embedded applications (e.g., avionics sys-
tems). Our progress on this issue can substantially benefit
other efforts such as MDPnP, since those efforts have pre-
viously focused on lower-level device protocol and integra-
tion issues as opposed to higher-level programming models.

The resulting open code base for our framework repre-
sents substantial progress toward a goal of providing re-
sources to the academic and industrial research communi-
ties to facilitate further research and consensus-building on
topics central to the emerging paradigm of systems of inte-
grated and cooperating medical devices (Goal 8).
What Did Not Work Well: In our initial implementa-
tion efforts, we struggled to obtain acceptable performance
when using JMS persistent message delivery (which routes
all messages through a database) to provide recovery after
a server malfunction. While we believe this mechanism can
be useful to provide reliability (recovery would be espe-
cially important, e.g., in the Critical Care Device Coordi-
nation CDIC in Section 2.3), it may be less important in
other contexts such as the Room-Oriented Device Informa-
tion Presentation CDIC in Section 2.1. Our experiments
show that persistent delivery does indeed give acceptable
performance for the Critical Care CDIC. Our experiments
were carred out with an open-source HSSQL implementa-
tion of the database component. We anticipate that other
database implementations or commercial database/JMS im-
plementations would improve performance.
Where Improvements Can Be Made: We aim to sig-
nificantly expand this initial, small set of mock devices
(Goal 10) using publicly available databases of device data
streams [15]. Our previous efforts in crafting wearable and
ambulatory sensor-based devices that utilize interoperabil-
ity standards [22, 18, 17] has guided us in the design of con-
nectivity interfaces and device connection protocols for our
framework. However, more implementation work is needed
to harden these capabilities and to incorporate actual de-
vices in the JMS-based. To validate our approach, we are
incorporating several devices donated to KSU by Cerner.

References
[1] S. Barre. DICOM images – Sebastian Barre re-

spository. http://www.barre.nom.fr/medical/
samples/.

[2] Cerner CareAware. http://www.cerner.com/
public/Cerner 3.asp?id=29157, 2008.

[3] A. Childs, J. Greenwald, G. Jung, M. Hoosier, and J. Hat-
cliff. CALM and Cadena: Metamodeling for component-
based product-line development. Computer, 39(2):42–50,
February 2006.

[4] Continua health alliance. http://www.
continuaalliance.org, 2008.

[5] R. L. Craft. Toward technical interoperability in
telemedicine. Telemedicine and e-Health, 11(3):384–404,
June 2005.

[6] DICOM homepage. http://medical.nema.org/.



[7] K. Grifantini. “plug and play” hospitals: Medical devices
that exchange data could make hospitals safer. MIT Tech-
nology Review, July 9, 2008, July 2008.

[8] R. Hofmann. Modeling medical devices for plug-and-play
interoperability. Master’s thesis, MIT, June 2007.

[9] Alarm systems - general requirements, tests and guidance
systems in medical electrical equipment and medical elec-
trical systems. IEC 60601-1-8, 2003.

[10] CDC Immunization Record EXchange (irex) project.
http://www.dt7.com/cdc/.

[11] W. B. Jr, S. Horii, F. Prior, and D. V. Syckle. Understand-
ing and using DICOM, the data interchange standard for
biomedical imaging. Journal of American Medical Infor-
matics Association, 4(3):199–212, May 1997.

[12] Medical Device Coordination Framework (MDCF) –
Kansas State University. http://mdcf.projects.
cis.ksu.edu/.

[13] Medical device ”plug-and-play” interoperability program.
http://mdpnp.org/, 2008.

[14] Medical Device Communications: VuSpec. IEEE, Piscat-
away, NJ, Feb. 2005. IEEE 11073 Standards.

[15] Physiobank medical device data stream repository.
[16] The Role of Technology in Reducing Health Care Costs.

Sandia National Laboratories, Albuquerque, NM, Oct. 1996.
SAND60–2469, DOE Category UC-900, Unlimited Re-
lease.

[17] D. Thompson and S. Warren. A small, high-fidelity re-
flectance pulse oximeter. In 2007 Annual Conference and
Exposition, American Society for Engineering Education,
June 2007.

[18] S. Warren, D. Andresen, D. Wilson, and S. Hoskins. Em-
bedded design considerations for a wearable cattle health
monitoring system. In 2008 International Conference on
Embedded Systems and Applications (ESA ’08), July 2008.

[19] S. Warren, R. L. Craft, R. C. Parks, L. K. Gallagher, R. J.
Garcia, and D. R. Funkhouser. A proposed information ar-
chitecture for telehealth system interoperability. In Toward
An Electronic Patient Record 99 (TEPR 99), pages 187–194,
May 1999.

[20] S. Warren and E. Jovanov. The need for rules of engagement
applied to wireless body area networks. In Proceedings of
the IEEE Consumer Communications and Networking Con-
ference, pages 979–983, Jan. 2006.

[21] S. Warren, J. Lebak, J. Yao, J. Creekmore, A. Milenkovic,
and E. Jovanov. Interoperability and security in wireless
body area network infrastructures. In Proceedings of the
27th Annual Conference of the IEEE EMBS, pages 3837–
3840, Sept. 2005.

[22] J. Yao, R. Schmitz, and S. Warren. A wearable point-of-
care system for home use that incorporates plug-and-play
and wireless standards. IEEE Transactions on Information
Technology in Biomedicine, 9(3):363–371, Sept. 2005.


